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Figure 1. Perfect generation (reconstruction) does not always yield desirable visual representations. (a) Pipeline of fine-grained
visual enhancements, where generative models take visual tokens as conditions and perform reconstruction. (b) Experiments across four
dimensions, i.e., training iterations, denoiser size, ratio of local tokens as conditions, and whether to use pre-trained denoisers. We measure
generation (CLIP score ↑) and visual representations (MMVP-VLM ↑) performance. As the results demonstrate, although increasing
the number of training iterations, adding more denoiser blocks, using a larger ratio of local tokens as conditions, and employing pre-trained
denoisers lead to better generation results, the performance of visual representations does not always improve. Best viewed zoomed in.

Abstract

The synergy between generative and discriminative mod-
els receives growing attention. While discriminative Con-
trastive Language-Image Pre-Training (CLIP) excels in
high-level semantics, it struggles with perceiving fine-
grained visual details. Generally, to enhance representa-
tions, generative models take CLIP’s visual features as con-
ditions for reconstruction. However, the underlying princi-
ple remains underexplored. In this work, we empirically
found that visually perfect generations are not always op-
timal for representation enhancement. The essence lies in
effectively extracting fine-grained knowledge from genera-
tive models while mitigating irrelevant information. To ex-
plore critical factors, we delve into three aspects: (1) Con-
ditioning mechanisms: We found that even a small number
of local tokens can drastically reduce the difficulty of recon-
struction, leading to collapsed training. We thus conclude
that utilizing only global visual tokens as conditions is the
most effective strategy. (2) Denoising configurations: We
observed that end-to-end training introduces extraneous in-
formation. To address this, we propose a two-stage train-
ing strategy to prioritize learning useful visual knowledge.

Additionally, we demonstrate that lightweight denoisers can
yield remarkable improvements. (3) Generation paradigms:
We explore both continuous and discrete denoisers with de-
sirable outcomes, validating the versatility of our method.
Through our in-depth explorations, we have finally arrived
at an effective method, namely GenHancer, which consis-
tently outperforms prior arts on the MMVP-VLM bench-
mark, e.g., 6.0% on OpenAICLIP. The enhanced CLIP can
be further plugged into multimodal large language models
for better vision-centric performance. All the models and
codes are made publicly available.

1. Introduction

Generative and discriminative models have evolved rapidly
in recent years [3, 27, 38, 50]. Both of them exhibit comple-
mentary strengths, where generative models like diffusion
models [14, 34, 51] and rectified flow [9, 26] capture low-
level visual details, while discriminative models like Con-
trastive Language-Image Pre-Training (CLIP) [33, 54] and
DINO [31] excel in high-level semantics. This complemen-
tary nature enables a synergistic relationship between them.
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Figure 2. Comparison with prior method [46]. (a) We only need
a lightweight denoiser, but (b) achieve stronger performance than
DIVA [46], which relies on pre-trained heavy generative models.

Pioneering work [53] has shown that discriminative mod-
els can facilitate the training of generative models through
feature alignment. Conversely, generative models can also
enhance discriminative models by improving their ability
to understand fine-grained visual patterns, e.g., orientation,
color and quantity. This enhancement is particularly perti-
nent for models like CLIP, which have inherent visual short-
comings [41] that could also limit Multimodal Large Lan-
guage Models (MLLMs) [28, 40] in vision-centric tasks.
Recent works [16, 45, 46] have attempted to enhance CLIP
ViT by using the visual features of ViT [7] as condi-
tional inputs for generative models. These models perform
self-supervised reconstruction to compel the discriminative
model to capture fine-grained visual details, as illustrated in
Fig. 1 (a). While these approaches demonstrate the poten-
tial of enhancing representations through generative mod-
els, they often rely on pre-trained heavy denoisers and do
not explore the underlying principle.

To enable generative models to enhance visual represen-
tations, a natural question arises: Do we need a perfect
generative model to achieve this enhancement? To address
this question, we conducted preliminary experiments from
several dimensions, including #training iterations, the ra-
tio of local tokens as conditions, the size of denoisers, and
whether to use a pre-trained generative model (denoiser), as
in Fig. 1 (b). The answer is that perfect generation (recon-
struction) does not always yield desirable visual representa-
tions. For example, in Fig. 1 (iii), introducing more local to-
kens as conditions can significantly improve reconstruction,
while the visual enhancement will be drastically degraded.
In Fig. 1 (iv), although the pre-trained denoiser exhibits bet-
ter reconstruction, its representations are weaker.

This leads us to further investigate the key points for gen-
erative models to effectively enhance visual representations.
We argue that generative models simultaneously contain
useful knowledge, like visual patterns and details, as well
as irrelevant information, like the gap between CLIP ViT’s
feature space and generative models’ condition space. To
effectively enhance representations, our general philosophy
is that discriminative models should prioritize learning use-
ful knowledge from generative models while circumvent-

ing irrelevant information. Furthermore, generative mod-
els can be divided into continuous [26, 29] and discrete [8]
ones, with different denoising objectives, which should also
be considered. Consequently, we conduct in-depth explo-
rations from three key aspects: conditioning mechanisms,
denoising configurations, and generation paradigms.

Key Point #1: Which part of the visual information
should generative models focus on? As in Fig. 1 (a), gen-
erative models take visual tokens of discriminative models
as conditions. The choice of different tokens significantly
impacts the outcomes. In this regard, we find only the
global token (i.e., class token) could yield desirable visual
enhancements. We attribute this to the fact that class token
alone helps maximize mutual information between visual
representations and generative models, while local tokens
bring about information leakage and drastically reduce the
task’s difficulty, resulting in collapsed learning.

Key Point #2: How to design denoising configura-
tions to transfer useful information for visual represen-
tations? The structure of the denoiser could determine the
enhancement effects. Additionally, before training CLIP,
it is essential to mitigate irrelevant information. Therefore,
we investigate the influence of different sizes of the denosier
and training stages. In this paper, we propose GenHancer,
a two-stage post-training method for visual enhancements.
In the first stage, we pre-train the projector and denoiser
while freezing the ViT, learning basic reconstruction abil-
ities and mitigating irrelevant information. In the second
stage, we fine-tune CLIP ViT to enhance its fine-grained vi-
sual representations. Meanwhile, we empirically found that
a lightweight denoiser is sufficient to achieve remarkable
results, which is more efficient yet stronger, as in Fig. 2.

Key Point #3: Do two types of denoisers share a com-
mon enhancing principle for visual representations? For
both continuous and discrete denoisers, we present tailor-
made designs, including denoiser and conditioning struc-
ture. Moreover, we reveal that previous Key Points #1, #2
apply to both types, indicating the versatility of our method.

Our contributions are summarized as follows:
• We conduct an in-depth study on visual representation en-

hancements with generative models and make the innova-
tive discovery that perfect reconstruction and pre-trained
models are not necessary. This leads us to explore three
key aspects: conditioning mechanisms, denoising config-
urations, and the generation paradigms.

• We propose GenHancer, a two-stage post-training method
with only lightweight denoisers for visual enhancements,
which uses only the class token as the conditional input
to perform self-supervised reconstruction. Our method is
applicable to both continuous and discrete denoisers.

• Comprehensive vision-centric evaluations show that our
enhanced CLIP significantly outperforms prior methods
that rely on pre-trained heavy denoisers, as in Fig. 2.
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2. Related Works

MLLMs and Vision Encoders. Currently, MLLMs pre-
dominantly employ CLIP [33] for visual encoding. Tong
et al. [41] identified several failure patterns in CLIP, which
hinder the fine-grained visual understanding of MLLMs. To
overcome this issue, early efforts [18, 40, 41] employed an
ensemble of visual experts to combat the visual shortcom-
ings. More recently, ROSS [45] leverages intrinsic visual
activations and incorporates a self-supervised visual recon-
struction loss during training MLLMs. Complementarily,
DIVA [46] proposes to enhance CLIP’s fine-grained abili-
ties through diffusion feedback. Similar to [46], we inde-
pendently enhance CLIP’s internal representations, which
not only strengthens CLIP as a vision-language retriever
but also enables the enhanced CLIP to be seamlessly in-
tegrated into MLLMs in a plug-and-play manner for better
fine-grained vision-centric performance.

Enhancing Visual Representations with Diffusion Mod-
els. Early works [36, 39, 56] utilize generative models
as data augmenters. Another line of works [5, 16, 47]
leverages self-supervised reconstruction tasks with diffu-
sion models, which helps models grasp visual details and
learn fine-grained representations. Similarly, DIVA [46]
takes CLIP’s features as conditional inputs to the diffusion
model [34], addressing its visual shortcomings through re-
construction. In summary, prior arts predominantly rely on
diffusion models [11, 34], whereas we apply our method to
both continuous and discrete generative models.

Vision-Centric Benchmarks. Canonical evaluations of
MLLMs focus on fundamental multimodal Q&A capa-
bilities across various domains, e.g., general perception
and cognition [10], text and characters [37], scientific
fields [30], and potential hallucinations [13, 25] in MLLMs.
However, these benchmarks could not effectively assess a
model’s fine-grained visual perception abilities, such as ob-
ject color, quantity, orientation, and viewpoint. To solve
this issue, Tong et al. [41] systematically explore the failure
modes of CLIP and propose a challenging MMVP bench-
mark with 9 visual patterns. CV-Bench [40] further expands
with 2,600 vision-centric VQA questions, covering dimen-
sions like spatial relationships, count, depth, and distance
of both 2D and 3D domains. Besides, NaturalBench [24]
curates natural adversarial samples that are easy for hu-
mans but MLLMs struggle with. In this paper, we employ
these vision-centric benchmarks to comprehensively evalu-
ate models’ fine-grained visual abilities.

3. Preliminaries of Generative Models

In principle, generative models can be divided into continu-
ous and discrete ones. For continuous generative models,
we focus on the recently popular rectified flow [26, 29],

while discrete generative models are conventionally built
upon pre-trained codebooks [8, 43] for discrete modeling.

Rectified Flow (RF). Most generative models explicitly
or implicitly learn a mapping from a basic distribution,
e.g., Gaussian distribution N (0, I), to a target distribution,
typically the real data distribution pdata. The core idea of
RF is to learn an Ordinary Differential Equation (ODE)
dZt = u(Zt, t)dt that follows a straight path from π0 to
π1. Here u(Zt, t) is a time-conditional velocity field. This
could be achieved by solving a least squares regression
problem: minu

∫ 1

0
E
[
∥(X1 −X0) − u(Xt, t)∥2

]
dt, where

Xt = tX1+(1−t)X0. In practice, we use ϕ to parameterize
u, and t is basically sampled from the uniform distribution
U(0, 1). The learning objective of RF is:

LRF = Et,x0,x1

∥∥∥(x1 − x0)− uϕ

(
tx1 + (1− t)x0, t

)∥∥∥2
2
,

where t ∼ U(0, 1), x0 ∼ N (0, I), x1 ∼ pdata.
(1)

Discrete Generative Models. For discrete modeling, one
should first learn a discrete codebook, where images are
represented by their corresponding indices. For example,
VQ-GAN [8] employs some schemes [12, 55] to learn a dis-
crete codebook of perceptually rich representations. Subse-
quently, given indices s<i of image x, the discrete genera-
tive model pϕ learns to predict the categorical distribution
of the next index si via the cross-entropy objective:

LCE = Ex∼pdata − log

L∏
i=1

pϕ(si|s<i), (2)

where L denotes the sequence length of a sample. pϕ could
be any form of model capable of modeling discrete distri-
butions, e.g., PixelCNNs [42] and Transformers [8, 44].

Conditional Generation. To achieve conditional genera-
tion, one could incorporate the condition c, e.g., class labels
or text prompts, into the parameterized model in Eq. (1) and
Eq. (2) as uϕ(xt, t, c) and pϕ(si|s<i, c), respectively.

4. Method

4.1. Overview and Formulation
Overview. We propose a two-stage post-training method,
namely GenHancer, to enhance CLIP ViT’s fine-grained
representations, as in Fig. 3 (a). To capture key information
from generative models, we delve into three aspects: First,
the choice of visual tokens for condition determines the dif-
ficulty of the reconstruction task, which is crucial for en-
hancement (Sec. 4.2). Second, we introduce denoising con-
figurations, which enable ViT to capture useful knowledge
while mitigating irrelevant information (Sec. 4.3). Third,
we present tailored design for both continuous and discrete
generative models (Sec. 4.4), also shown in Fig. 3 (b), (c).
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Figure 3. The two-stage post-training framework for visual enhancements. (a) Overall training pipeline. (b) Continuous generative model
as the denoiser. We employ a lightweight FLUX-like DiT [22] (but with fewer blocks) and employ a regression loss of flow matching. (c)
Discrete generative model as the denoiser. We choose a lightweight Perceiver [17] and employ cross-entropy loss to predict masked tokens.

Notations. Here, two types of generative models are uni-
formly represented as gϕ parameterized by ϕ. Let vθ de-
note CLIP’s visual encoder with parameters θ, whose fea-
tures are connected to gϕ as conditions through projector
hω , i.e., hω ◦vθ(x). The input sample is x, which becomes
x̃ in the denoising space, e.g., VAE [19] and VQ-GAN [8]
for continuous and discrete denoisers, respectively.

Repurposing Conditional Generation to Self-supervised
Reconstruction. Generative models can capture low-
level details. To transfer this capability to vθ, we replace
the original condition c with the visual feature vθ(x). By
reconstructing the visual inputs, vθ learns to grasp low-level
visual details and is enhanced with fine-grained representa-
tions. In this sense, we transform the original conditional
generation into a self-supervised reconstruction task. The
learning objectives for continuous Lc and discrete genera-
tive models Ld can be re-written as Eq. (3) and Eq. (4):

Lc = Et,x,x̃0,x̃1

∥∥(x̃1 − x̃0)− gϕ

(
x̃t, t,hω ◦ vθ(x)

)∥∥2
2
,

where t ∼ U(0, 1), x̃t = tx̃1 + (1− t)x̃0,
(3)

Ld = Ex − log

L∏
i=1

gϕ

(
si|s<i,hω ◦ vθ(x)

)
. (4)

Here, hω ◦ vθ(x) serves as the conditional input of gϕ.

Formulation. Let G and V denote random variables of
features of gϕ and vθ. I(·) and H(·) denote mutual infor-
mation and entropy. Then we have the following theorem:

Theorem 1. When gϕ is fixed, self-supervised reconstruc-
tion is equivalent to maximizing the mutual information
I(V ;G) between V and G. The knowledge learned by vθ

from gϕ can be interpreted as the increase in I(V ;G).

Proof. The mutual information could be written as:
I(V ;G) = H(G) − H(G|V ). Through reconstruction in
Eq. (3) or Eq. (4), by conditioning G on V , V is trained to
approximate the distribution of G. Consequently, H(G|V )
decreases during training. While H(G) is fixed, the de-
crease in H(G|V ) leads to the increase in I(V ;G).

From the results in Fig. 1 (b)(i), the reconstruction im-
proves as training progresses, which corresponds to an in-
creasing I(V ;G). However, visual representations might
decrease. In light of this, for the enhancement of visual rep-
resentations, the knowledge in G can be decomposed into
useful knowledge G1 (e.g., basic semantics, visual patterns)
and irrelevant information G2 like the gap between feature
space of vθ and condition space of gϕ. In this regard, to
effectively enhance visual representations, our underlying
philosophy is: The visual encoder should learn to cap-
ture useful knowledge from generative models as much
as possible, i.e., max I(V ;G1), while avoiding irrelevant
information, i.e., min I(V ;G2). This equals to applying
regularization on V to prevent overfitting to G2:

max
V

I(V ;G1)−λI(V ;G2) ⇒ max
V

I(V ;G1)+λd(V ;V0),

(5)
V0 is the initial visual model and d(·) is a distance metric.

4.2. Conditional Visual Tokens
The choice of conditional visual tokens is crucial for vi-
sual enhancement. If too many tokens are fed to the gener-
ative model, the reconstruction becomes excessively easy.
The reason is that local tokens directly correspond to im-
age areas with information leakage. In this case, I(V ;G1)
in Eq. (5) becomes small and vθ fails to grasp useful in-
formation from gϕ. To ensure a remarkable I(V ;G1), we
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argue that the number of local tokens should be carefully
controlled. Our experiments show that even a small num-
ber of local tokens, though achieving good reconstruction
quality, can still cause marginal visual enhancement, as in
Fig. 1 (iii). As a result, we propose that the visual con-
dition features should exclusively comprise only the class
token [CLS]. This strategy applies to both continuous and
discrete models, as validated in Fig. 5 of Sec. 5.3.

4.3. Denoising Configurations
To effectively enhance visual representations, we aim to
maximize I(V ;G1) while suppressing I(V ;G2) in Eq. (5).
In this regard, our explorations are three-fold: training
stages, timestamp sampling of the continuous denoiser, and
the update strategy for vθ.
Two Stage Training. An important source of G2 is the
gap between the feature space of vθ and the conditions
of gϕ, which is irrelevant to representation learning and
could degrade the performance. Furthermore, since gϕ is
lightweight and randomly initialized, it could introduce po-
tential noise to vθ at the beginning. Consequently, we pro-
pose a two-stage training pipeline. At Stage-1, we train
the denoiser gϕ and the projector hω while freezing vθ,
in which gϕ acquires basic generative capabilities for vi-
sual enhancements and hω learns to bridge the space gap,
thereby reducing I(V ;G2). In Stage-2, we focus on enlarg-
ing I(V ;G1) and train vθ to improve fine-grained repre-
sentations. Moreover, we empirically found that as long as
Stage-1 is performed sufficiently, the impact of whether the
denoiser and projector are trained in Stage-2 is negligible.
Low Rank Adaption (LoRA) of vθ. The pre-trained vi-
sual encoder vθ possesses strong global semantics, i.e.,
V0, which should be maintained when incorporating fine-
grained perception. To prevent vθ from overfitting during
reconstruction, we update vθ using LoRA [15], which im-
plicitly constrains d(V, V0) in Eq. (5).
Timestamp Sampling. For continuous models like RF,
timestamp sampling is of vital importance. Conventionally,
RF [29] is trained to predict velocity across timestamps uni-
formly in [0, 1]. Considering xt = tx1 + (1 − t)x0, prior
works [9] uncover that the velocity target at intermediate
timestamps, i.e., t ≈ 0.5, is more challenging. In our case,
sampling intermediate timestamps more frequently could
increase the difficulty of the reconstruction task, thus ef-
fectively amplifying I(V ;G1) and allowing the visual en-
coder vθ to effectively acquire useful fine-grained knowl-
edge from G1. In this regard, we propose scaled Logit-
Normal sampling for timestamps, as shown below:

t = sigmoid(s · ε), where ε ∼ N (0, 1). (6)

Here, ε is sampled from the normal distribution,
sigmoid(x) = 1

1+exp(−x) , and s > 0 is the scale hy-
perparameter that controls the extent to which sampling is

focused on the intermediate timestamps. Smaller s results
in more frequent sampling around 0.5. The diagrams of dis-
tributions in various s are illustrated in the Appendix.

4.4. Generation Paradigms
For both types of generative models, we need to design ar-
chitectures for denoisers and implementation of the condi-
tioning mechanism. Notably, our denoiser is lightweight
and randomly initialized, without pre-trained weights of
heavy denoisers like Stable Diffusion [34] in [46].

Continuous Generative Models. We choose RF as the
continuous denoiser, which is modeled in the latent space
of pre-trained VAE [19]. The structure is inherited from
FLUX.1-dev [22], consisting of n× Multimodal Diffu-
sion Transformer (MM-DiT) [9, 32] blocks and 2n× single-
stream DiT (Single-DiT) blocks, as shown in Fig. 3 (b). By
default, we set n = 2, which is very efficient with ∼ 1/10
parameters of the original FLUX.1-dev denoiser. Simi-
lar to DiT [9, 32], the condition of visual tokens ([CLS]
of vθ) is introduced through the modulation mechanism via
adaptive layernorm [1, 32]. The learning objective is the
regression of flow matching in Eq. (3).

Discrete Generative Models. Here, we choose Per-
ceiver [17] as the discrete denoiser, building upon off-the-
shelf VQ-GAN’s codebook [8]. We first mask a certain pro-
portion of input tokens. The condition of visual features
is introduced via a cross-attention module, as depicted in
Fig. 3 (c). Specifically, we set the query as the unmasked
tokens s<i, while the key and value are the concatenation
of the unmasked tokens and [CLS] of vθ. They are collec-
tively fed to the Perceiver with cross-entropy loss to predict
the masked token indices si, as in Eq. (4).

5. Experiments
5.1. Experimental Setup
Implementation Details. For continuous generative
models, we choose RF, whose structure is similar to
FLUX.1-dev [22], but with only 2 MM-DiT and 4
Single-DiT blocks (∼ 10% of the parameters). The discrete
denoiser is parameterized by a 6-layer Perceiver to predict
the masked tokens indexed VQ-GAN’s codebook [8].
Similar to [49], the mask ratio is randomly sampled from
50% to 90%. For both generative models, we only take the
[CLS] token of CLIP ViT as the conditional input while
dropping other local tokens to prevent information leakage.
We choose the scale factor in Eq. (6) as 1 by default.

Training Details. Our training process consists of two
stages, each involving one epoch on the CC3M [35] dataset.
We choose AdamW as the optimizer, with a learning rate
of 1e-4 and 1e-5 for Stage-1 and Stage-2, respectively. At
Stage-2, we optimize the visual encoder using LoRA with a
rank of 16. We employ a global batch size of 256.
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Table 1. Performance of various CLIP backbones in MMVP-VLM benchmark. Here, we report our results using the continuous denoiser.
The enhanced CLIP consistently outperforms prior methods across various visual patterns. The visual patterns are symbolized as: ☼:
Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and Relational
Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.

CLIP Backbone #Params (M) Resolution Method ☼ Û L � , h Ô k � Average

OpenAI ViT-L-14 427.6 2242
Original 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
+ DIVA 13.3 20.0 40.0 6.7 20.0 53.3 46.7 20.0 13.3 25.9
+ Ours 13.3 33.3 33.3 20.0 6.7 73.3 46.7 20.0 40.0 31.9 (+6.0)

OpenAI ViT-L-14 427.9 3362
Original 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
+ DIVA 26.7 20.0 33.3 13.3 13.3 46.7 26.7 6.7 40.0 25.2
+ Ours 6.7 20.0 33.3 20.0 6.7 73.3 53.3 26.7 26.7 29.6 (+4.4)

MetaCLIP ViT-L-14 427.6 2242
Original 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
+ DIVA 6.7 6.7 60.0 0.0 26.7 66.7 20.0 20.0 40.0 27.4
+ Ours 13.3 20.0 53.3 13.3 26.7 80.0 33.3 13.3 33.3 31.9 (+4.5)

MetaCLIP ViT-H-14 986.1 2242
Original 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
+ DIVA 13.3 20.0 53.3 33.3 13.3 66.7 33.3 13.3 40.0 31.9
+ Ours 20.0 20.0 66.7 26.7 26.7 66.7 33.3 20.0 53.3 37.0 (+5.1)

SigLIP ViT-SO-14 877.4 2242
Original 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
+ DIVA 13.3 26.7 60.0 46.7 13.3 73.3 53.3 26.7 53.3 40.7
+ Ours 20.0 20.0 66.7 60.0 20.0 86.7 40.0 13.0 53.3 42.2 (+1.5)

SigLIP ViT-SO-14 878.0 3842
Original 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
+ DIVA 26.7 33.3 53.3 26.7 13.3 80.0 40.0 26.7 46.7 38.5
+ Ours 26.7 20.0 66.7 33.3 13.3 86.7 40.0 26.7 46.7 40.0 (+1.5)

Comparative Baseline. Similar to [46], our method
GenHancer independently enhances CLIP via post-tuning.
When equipped with our enhanced CLIP and trained with
original recipes, MLLMs could perform better on vision-
centric benchmarks. In this regard, GenHancer could be
viewed as a plug-and-play vision-enhancement method for
MLLMs. We primarily compare with DIVA [46].

Evaluation Protocol. Following [46], we perform vi-
sual enhancements on six CLIP backbones, including Ope-
nAICLIP ViT-L @224/@336 [33], MetaCLIP@224 ViT-
L/H [50] and SigLIP-SO-14 @224/@384 [54]. We use
MMVP-VLM [41] to evaluate fine-grained perception abili-
ties. Subsequently, we follow the official training recipes of
LLaVA-1.5 [28] to train MLLMs with our enhanced CLIP
ViT. The resulting MLLMs are comprehensively evaluated
on vision-centric benchmarks like MMVP-MLLM [41],
CV-Bench [40] and NaturalBench [24], as well as mul-
timodal understanding benchmarks, including POPE [25]
ScienceQA [30] and HallusionBench [13].

5.2. Comparative Results

Our method significantly enhances CLIP’s fine-grained
visual perception abilities. We evaluate CLIP models
on the challenging MMVP-VLM benchmark [41], which
contains 9 fine-grained visual patterns for a comprehen-
sive vision-centric evaluation. As in Table 1, our method
with only a lightweight denoiser, surpasses the previous
method [46] that employed a heavy pre-trained denoiser
across multiple CLIP backbones, with variations in resolu-
tion and parameters. For example, our method outperforms

a minion smiling 
with tongue out

a minion smiling 
without tongue out

Text Original Image Recon. DIVA Recon. Ours

✅❌DIVA Ours

Figure 4. Qualitative results. Although DIVA achieves better re-
constructions of input images, it fails to perceive fine-grained vi-
sual details between ‘tongue out’ and ‘without tongue out’.

DIVA by 6.0% and 4.5% on OpenAICLIP and MetaCLIP,
respectively. Besides, CLIP’s visual shortcomings are ef-
fectively addressed after post-training, e.g., we improved
MetaCLIP’s color perception (h) from 46.7% to 80.0%,
and enhanced its viewpoint understanding (�) by 20%.

Qualitative Evaluations. We present two cases in Fig. 4.
Although DIVA achieves better reconstructions, our method
correctly retrieves images for given texts, while DIVA fails.
This further emphasizes that better reconstruction does not
necessarily lead to better representations.

Plug-and-play vision-centric enhancements for MLLMs.
Our method independently enhances CLIP ViT with
fine-grained representations. Considering that existing
MLLMs [2, 27, 28] predominantly use CLIP ViT as the
visual encoder, we replace the original CLIP with the en-
hanced CLIP as a plug-and-play module and integrate it
into MLLMs to explore the impact of the enhanced visual
representations on MLLMs’ final performance. For fair
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Table 2. Comprehensive evaluation of MLLMs (LLaVA-1.5 [28]), including vision-centric and conventional MLLM benchmarks. † We
use official DIVA CLIP checkpoints [46] to reproduce the results. ‡ Similar to [23], we select the choice with the highest likelihood as
MLLM’s prediction. Hallusion: HallusionBench [13]. SciQA: ScienceQA [30]. Bold and underline indicate the best and the second best.

LLM CLIP
Vision-Centric Benchmarks Conventional MLLM Benchmarks

MMVP-
MLLM [41]

NaturalBench [24]‡ CV-Bench 2D [40] CV-Bench
3D [40]

POPE [25] SciQA-
IMG [30]

Hallusion
Avg. [13]Acc Q-Acc I-Acc G-Acc ADE20K COCO rand pop adv

Vicuna-7B
Original 24.7 76.4 53.6 56.4 17.6 49.6 60.9 58.7 87.3 86.1 84.2 66.8 27.6
DIVA† 31.3 75.3 51.7 56.1 22.3 51.3 63.4 60.2 87.9 87.0 84.6 66.3 28.6
Ours 30.7 77.3 55.6 59.1 24.4 52.9 63.6 63.2 88.1 86.7 84.6 66.5 28.4

Vicuna-13B
Original 30.7 76.3 52.9 55.1 13.8 52.6 63.3 65.0 87.1 86.2 84.5 71.6 24.5
DIVA† 35.3 76.0 52.7 56.0 16.8 53.2 64.3 65.8 88.1 87.4 84.8 71.8 25.2
Ours 36.7 77.2 55.3 58.7 22.9 55.3 64.3 66.4 87.8 87.0 84.9 72.3 26.4

Table 3. Performance of zero-shot classification and retrieval that
require global semantics. We report the results of original and
post-tuned OpenAICLIP@224.

Method Classification Retrieval-Image@5 Retrieval-Text@5

IN-1K C100 SUN397 Cars Flickr30k COCO Flickr30k COCO

Original 75.5 76.1 67.5 77.7 87.2 61.1 97.4 79.2
Ours 75.6 76.1 67.5 77.6 87.3 61.2 97.2 79.4

comparisons, we adopt the same training setup as LLaVA-
1.5 [28], i.e., training data and stages, to train MLLMs.
For DIVA [46], we adopt the official CLIP checkpoints.
We conduct a comprehensive evaluation of the MLLMs
on multiple vision-centric benchmarks, including MMVP-
MLLM [41], CV-Bench [40] and NaturalBench [24], as
well as some general multimodal understanding bench-
marks. Results in Table 2 show that visual enhancement
of CLIP is effectively transferred to MLLMs, resulting in
significant improvements across vision-centric benchmarks.
For instance, compared to the original CLIP in Vicuna-
7B MLLM, we achieved 6.0% and 4.5% improvements on
MMVP-MLLM and CV-Bench 3D, respectively.

Visual enhancements do not hurt CLIP’s original global
semantics. CLIP has inherently strong global seman-
tics in classification-based tasks. To explore how fine-
grained enhancements affect this ability, we evaluate zero-
shot classification on datasets like ImageNet-1K [6], CI-
FAR100 [21], Stanford Cars [20], and SUN397 [48] and
zero-shot cross-modal retrieval tasks on Flick30k [52] and
COCO [4]. Table 3 reveals that the performance difference
is minimal (< 0.3%) across various settings, which means
that our method could enhance CLIP’s fine-grained under-
standing without forgetting its global semantics.

5.3. Key Explorations and Ablations
Key Point #1: Selecting Conditional Visual Tokens. As
in Sec. 4.2, selecting conditional visual tokens is critical
for enhancing representations. We conduct experiments
by choosing the class token and different proportions of
local tokens, i.e., [CLS] + n% [LOCAL]. As displayed
in Fig. 5, even a very small ratio (10%) leads to signifi-

Continuous Discrete
15

20

25

30

M
M

V
P

-V
LM

Local Tokens Ratio
0%
10%
20%
50%
80%
100%

Figure 5. Performance of CLIP across various conditional visual
tokens on MMVP-VLM, i.e., [CLS] + n% [LOCAL].

Cont. O@224 Cont. S@224 Disc. O@224 Disc. S@224
15

20

25

30

35

40
M

M
V

P
-V

LM
Training Setup

End-to-End
Two-Stage

Figure 6. Comparison of CLIP with end-to-end and the proposed
two-stage training on MMVP-VLM. Here, Cont. and Disc. denote
continuous and discrete denoisers. O: OpenAICLIP. S: SigLIP.

cant performance degradation, which suggests that local to-
kens carry substantial signals for reconstruction, making the
task too easy with information leakage. Consequently, this
prevents the visual encoder from effectively learning fine-
grained details and brings about a limited I(V ;G1). The
conclusion applies to both types of gϕ. Therefore, we pro-
pose to choose only the class token as the condition.

Key Point #2.1: Two-Stage Training. As elaborated in
Sec. 4.3, in Stage-1 of the two-stage training scheme, the
projector learns to bridge the gap between the feature space
of the visual encoder and the condition space of the de-
noiser, which serves as irrelevant information G2. Abla-
tions comparing end-to-end with the proposed two-stage
training are illustrated in Fig. 6. End-to-end training consis-
tently exhibits a performance drop of over 5% across vari-
ous settings. This indicates that our two-stage training is
crucial in preventing interference from G2.

Key Point #2.2: Timestamp Sampling for Continuous
Denoisers. Timestamp sampling of continuous denoisers
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Table 4. Comparison of timestamp sampling in continuous denois-
ers on MMVP-VLM. O: OpenAICLIP. M: MetaCLIP.

Distribution Scale O@224 O@336 M@224
Uniform N/A 21.5 22.2 23.7

Logit-Normal

0.1 27.4 25.9 26.7
0.5 28.2 28.9 29.6
1.0 31.9 29.6 31.9
5.0 24.5 25.9 25.9
10.0 20.7 20.0 21.5

Table 5. Performance on SigLIP@224 across different sizes of
lightweight continuous and discrete denoisers.

Continuous #DiT Blocks (MM+Single) 1+2 2+4 3+6 4+8

MMVP-VLM 41.5 42.2 42.2 41.5

Discrete #Perceiver Layers 2 4 6 8

MMVP-VLM 41.5 43.7 45.2 43.7

is also pivotal for vθ to learn the fine-grained knowledge
from gϕ, i.e., I(V ;G1). We compare our proposed scaled
Logit-Normal sampling with standard uniform sampling, as
shown in Table 4. Compared to uniform sampling, ours fa-
vors sampling closer to the middle (t = 0.5), i.e., in the
middle of two distributions xt = tx1 + (1 − t)x0, mak-
ing denoising more challenging and more beneficial for en-
hancing I(V ;G1). For example, our proposed distribution
outperforms uniform sampling by 10.4%, 7.4% and 8.2%
on three CLIP backbones in Table 4. Additionally, when
the scale s is too small (e.g., s = 0.1, sampling too around
0.5) or too large (e.g., s = 10, sampling close to 0 or 1), the
lack of diversity in t can lead to suboptimal results due to
the lack of diversity. In this work, we set s = 1 by default.

Key Point #2.3: Sizes of lightweight denoisers. We fur-
ther explore the impact of the size of lightweight denoisers.
For the continuous RF, we consider the number of blocks in
MM-DiT and Single DiT. We consider the number of layers
for Perceiver. Table 5 demonstrates that the denoiser could
perform remarkably well with a relatively small size, indi-
cating the efficiency of our lightweight denoisers.

Key Point #3: Continuous and Discrete Denoisers. Ta-
ble 6 demonstrates the performance with continuous and
discrete denoisers. Both of them surpass previous work [46]
on various backbones. For example, the discrete denoiser
obtains a 4.5% performance gain on SigLIP@224 [54]. In
summary, our method is general and applies to both con-
tinuous and discrete models. It is efficient with lightweight
denoisers but strong enough to outperform prior arts [46].
Notably, previous Key Points #1∼#2 are consistently ap-
plicable to both continuous and discrete denoisers, further
highlighting the versatility of our method.

5.4. Further Analysis
Why are improvements on SigLIP relatively small? In
Table 1, we observe that the improvement on SigLIP is rel-
atively smaller compared to OpenAICLIP and MetaCLIP.

Table 6. Performance of our method with our continuous and
discrete denoisers on MMVP-VLM (average of all visual pat-

terns). Bold and underline indicate the best and the second best.
Method OpenAI@224 SigLIP@224 SigLIP@384

DIVA 25.9 40.7 38.5
Continuous 31.9 42.2 40.0
Discrete 28.9 45.2 40.7

Table 7. Efficiency comparison of our lightweight RF denoiser
with pre-trained FLUX.1-dev.

Denoiser Efficiency MMVP-VLM

#Params Memory Time/100 iters OpenAI Meta-H

Pre-trained 11.90B 37.33G 198.57s 32.6 37.1
Lightweight 1.31B 13.07G 20.55s 31.9 37.1

Specifically, the performance gain over the original SigLIP
is ∼ 3.7%, less than that for others, i.e., > 10%. Unlike
the other two backbones [33, 50], SigLIP [54] does not ex-
plicitly train a distinct class token. In practice, we extract
the pooler output of SigLIP as the condition for the
denoiser, which is obtained by aggregating all local tokens
through attention and linear layers. We attribute the rela-
tively small improvement on SigLIP to the indirect leakage
of local information through the pooler output, which
hinders the enhancement of I(V ;G1). This is consistent
with the discussion in Sec. 4.2 and the results in Fig. 5.

Efficiency analysis compared with pre-trained FLUX.
We provide a comparison between our lightweight RF (n =
2) and original FLUX.1-dev [22] across the following di-
mensions: #params of denoisers, per-device GPU memory
and training time of 100 iterations. To ensure fair com-
parisons, we fix a per-device batch size of 2. As Table 7
shows, our lightweight denoiser is much more efficient than
the pre-trained heavy one. Specifically, our lightweight de-
noiser has approximately 1/10 of the parameters, occupies
about 1/3 of the memory, and is 10 times faster in training,
while the final performance remains comparable.

6. Conclusive Remarks
In this paper, we delve into the underlying principles of how
generative models enhance visual representations. We in-
novatively uncover that the perfect generation does not al-
ways yield optimal representations. The pivot is to learn
useful knowledge from the generative model while mitigat-
ing irrelevant information. Our key findings lie in three as-
pects. (1) Conditioning mechanism. We found that local
tokens could make the reconstruction task too easy, while
class token alone as the condition makes the reconstruc-
tion task meaningful and significantly enhances visual rep-
resentations. (2) Denoising configurations. We propose a
novel two-stage post-training method to enable vision en-
coders committed to learning fine-grained knowledge while
alleviating irrelevant content. (3) Our model design en-
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ables both continuous and discrete denoisers to effectively
enhance visual representations. Vision-centric evaluations
demonstrate that our method with lightweight denoisers can
significantly outperform previous methods relying on heavy
pre-trained generative models. We hope this work will in-
spire further in-depth explorations into the synergy between
generative and discriminative models, as well as the rela-
tionship between generation and understanding tasks.
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GenHancer: Imperfect Generative Models are Secretly
Strong Vision-Centric Enhancers

Supplementary Material

Overview
In this appendix, we provide additional descriptions of the
following contents:
• Relationship with prior works in Appendix A, including

some discussions about the differences.
• More training details of hyperparameters in Appendix B.
• Diagrams of various timestamp sampling distributions in

Appendix C.
• Additional experimental results in Appendix D.
• Additional qualitative results and cases of the enhanced

CLIP (Appendix E) and MLLMs with our enhanced CLIP
(Appendix F).

• We also attach algorithms of our two-stage training with
continuous and dicrete denoisers in Appendix G.

A. Relationship with Prior Works
In this paper, we propose a two-stage post-training method
to enhance discriminative models’ fine-grained visual repre-
sentations. For discriminative models, we primarily choose
CLIP [33], considering its wide range of applications.
Specifically, CLIP is inherently a vision-language model,
capable of image-text retrieval and matching. Addition-
ally, CLIP ViT is widely employed as a visual encoder in
Multimodal Large Language Models (MLLMs). Note that
our approach follows a post-training paradigm, where we
enhance the fine-grained capabilities of a pre-trained CLIP
ViT, while preserving its original global semantics.

Comparison with DIVA [46]. DIVA is a pioneer work
and proposes to enhance visual representations of CLIP
ViT through diffusion feedback. It independently enhances
CLIP ViT’s visual representations with the guidance of pre-
trained stable diffusion [34]. Similar to DIVA, our work fo-
cuses on enhancing CLIP ViT’s internal visual representa-
tions. The enhanced CLIP itself could be a more competent
vision-language model with better image-text retrieval per-
formance. Furthermore, the enhanced CLIP ViT serves as
a plug-and-play module and could be seamlessly plugged
into MLLMs. When using the same training recipes but
with the enhanced vision encoder, MLLMs could be more
capable on several vision-centric benchmarks, with better
fine-grained perception of visual details and overcoming vi-
sual shortcomings brought about by the original CLIP.

Different from DIVA, we delve into the underlying prin-
ciples of how generative models enhance vision models
from various orthogonal dimensions. Notably, we only
employ lightweight denoisers without pre-trained weights

of heavy generative models. Our method is efficient yet
stronger than DIVA. We also provide several key insights
about how to enhance visual representations, i.e., condi-
tioning mechanisms and training configurations. We fur-
ther explore the implementation of both continuous and dis-
crete generative models. When equipped with correspond-
ing tailor-made designs, both continuous and discrete de-
noisers outperform DIVA.
Comparison with ROSS [45]. Ross is a pioneering work
that explores the intrinsic signals in vision modality and
proposes to append vision-centric self-supervision into the
training of MLLMs. The core difference between ROSS
and our method is that, ROSS is directly oriented to train-
ing better MLLMs. In most cases, ROSS freezes CLIP ViT
and enhances the vision-centric performance of MLLMs
through the parameters of LLMs. In contrast, our method
is directly oriented to enhance CLIP ViT’s visual repre-
sentations. Our method is more general, and the result-
ing enhanced CLIP could be plugged into various MLLMs.
In summary, we independently enhance CLIP ViT, which
could be merged into MLLMs for further enhancements,
while ROSS directly enhances MLLMs with the ViT frozen.

B. More Training Details
Our training process consists of two stages, each involving
one epoch on the CC3M [35] dataset. We choose AdamW
as the optimizer, with a learning rate of 1e-4 and 1e-5 for
Stage-1 and Stage-2, respectively. At Stage-2, we optimize
the visual encoder using LoRA with a rank of 16. We train
the model on 8 GPUs with a per-device batch size of 16, and
the gradient accumulation steps are set as 2, resulting in a
global batch size of 256. We plug LoRA to CLIP ViT, with
a rank of 16, and an α of 16, and we also employ dropout
with a ratio of 0.1 within LoRA.

C. Diagrams of Timestamp Sampling
The scaled Logit-Normal timestamp sampling is as follows:

t = sigmoid(s · ε), where ε ∼ N (0, 1). (7)

We provide some illustrative diagrams to show the distribu-
tion of several candidate distributions, as shown in Fig. 7.
In our scaled Logit-Normal sampling, as s decreases, the
distribution becomes more focused on sampling around the
middle (t = 0.5). Conversely, as s increases, the distri-
bution becomes more biased towards sampling at the ex-
tremes, i.e., t = 0 or 1.
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Figure 7. Probability density function of different distributions.
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Figure 8. The effect of LoRA on several CLIP backbones.

D. More Experimental Results

The effect of LoRA. In Stage-2, we apply LoRA to the
visual model. The reason is that direct training on the vi-
sual model causes rapid updates, which can easily damage
the model’s high-level semantics and lead to overfitting. By
using LoRA, the model can be trained on a larger variety of
samples, allowing it to learn more generalizable and fine-
grained representations. We conduct experiments on several
CLIP backbones, and compare the performance with direct
training and LoRA training, as shown in Fig. 8. The perfor-
mance with LoRA for visual encoder consistently outper-
forms the cases of direct training.

Whether to update the denoiser and projector in Stage-
2. In the main text, we argue that in Stage-1, the visual
encoder should be fixed, and we train the denoiser and pro-
jector. In this way, the projector could learn to bridge the
gap between the feature spaces, which serves as the irrele-
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Figure 9. The performance of whether to update the denoiser and
the projector in Stage-2.

Table 8. Performance of various mask ratios on Ope-
nAICLIP@224.

Mask Ratio (%) 50 60 70 75 80 85 90 random (50-90)

MMVP-VLM 28.1 27.4 28.9 27.4 26.7 25.9 25.9 28.9

vant information G2 for visual enhancements. In Stage-2,
we begin to train CLIP ViT to enhance its visual representa-
tions. We empirically found that whether the denoiser and
projector are updated in Stage-2 has marginal impacts on
the final results, as long as stage-1 training is sufficient. The
results are shown in Fig. 9.

Performance with various mask ratios. In the discrete
denoiser, we apply masking mechanisms. Here, we pro-
vide experimental results across various mask ratios of Ope-
nAICLIP@224, as shown in Table 8.
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Figure 10. Qualitative results of CLIP on MMVP-VLM benchmark. The enhanced CLIP overcomes original visual shortcomings in fine-
grained details.

E. Qualitative Results of CLIPs
We provide further qualitative results of the original CLIP
and our enhanced CLIP, as shown in Fig. 10. The en-
hanced CLIP overcomes original visual shortcomings in
fine-grained details, including color, quantity, structural
characteristics and state.

F. Qualitative Results of MLLMs
We provide qualitative results of LLaVA-1.5 with original
CLIP ViT and our enhanced CLIP ViT, as shown in Fig 11.
Our enhanced visual model could further boost MLLMs’
fine-grained visual perception abilities.

G. Algorithms
For a clearer and more thorough understanding of our
method, we attach the algorithm details of two-stage post-
training with continuous and discrete denoisers in Algo-
rithm 1 and Algorithm 2, respectively.
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Question: 

From which angle is this image taken?
(a) Front (b) Side

The image is taken from a front angle, as the snake is seen 
resting on a branch.

Answer: (a)

The image is taken from a front angle, allowing us to see the 
green snake on the tree branch.

Answer: (a)

LLaVA 1.5

LLaVA 1.5 + Our ViT

Question: 

From which angle is this image taken?
(a) Front (b) Side

The image is taken from a front angle, as the green snake is 
seen from the front, with its head and body visible.

Answer: (a)

The image is taken from a side view, with the green snake 
resting on a tree branch.

Answer: (b)

LLaVA 1.5

LLaVA 1.5 + Our ViT

✅

✅ ❌

✅

Question: 

Is the edge of the heart in the picture 
white or dark-colored?
(a) White (b) Dark-colored

The edge of the heart in the picture is white.

Answer: (a)

The edge of the heart in the picture is white.

Answer: (a)

LLaVA 1.5

LLaVA 1.5 + Our ViT

Question: 

Is the edge of the heart in the picture 
white or dark-colored?
(a) White (b) Dark-colored

The edge of the heart in the picture is white.

Answer: (a)

The edge of the heart in the picture is dark-colored.

Answer: (b)

LLaVA 1.5

LLaVA 1.5 + Our ViT

✅

✅ ❌

✅

Question: 

In this image, how many eyes can you 
see on the animal? 
(a) 1 (b) 2

In the image, there are two eyes visible on the bird.

Answer: (b)

In the image, there is only one eye visible on the bird.

Answer: (a)

LLaVA 1.5

LLaVA 1.5 + Our ViT

Question: 

In this image, how many eyes can you 
see on the animal? 
(a) 1 (b) 2

In the image, there are two eyes visible on the animal.

Answer: (b)

In the image, there are two eyes visible on the animal.

Answer: (b)

LLaVA 1.5 

LLaVA 1.5 + Our ViT  

✅

❌ ✅

✅

Figure 11. Qualitative results of MLLMs on MMVP-MLLM benchmark. When equipped with our enhanced CLIP, MLLMs produce better
vision-centric performance.
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Algorithm 1 Two-stage Visual Enhancements with Continuous Lightweight Denoiser

Input: Lightweight and random-initialized denoiser gϕ(·), with lightweight FLUX-like architecture (MM-DiT + Single-DiT).
Input: Pre-trained CLIP ViT vθ(·) for fine-grained visual representation enhancements.
Input: Random initialized projector hω(·) to bridge the feature space of vθ and condition space of gϕ.
Input: The scale hyperparameter s in the proposed scaled Logit-Normal sampling.
Input: Pre-trained VAE vae(·) to provide latent space for generative modeling.
Input: Image-only training dataset D without annotations.

1: # =================================== Stage-1 ==================================
2: for x in D do
3: ▷ Prepare input data for generative modeling in latent space: x̃1 = vae(x) and x̃0 ∼ N (0, I).
4: ▷ Interpolating in the feature space: x̃t = tx̃1 + (1− t)x̃0.
5: ▷ Visual encoding as conditions for denoisers: hω ◦ vθ(x).
6: ▷ Timestamp sampling via scaled Logit-Normal distributions: ε ∼ N (0, 1) then t = sigmoid(s · ε).
7: ▷ Denoising regression objective (flow matching): # only update gϕ and hω.

argmin
ϕ,ω

Et,x,x̃0,x̃1

∥∥(x̃1 − x̃0)− gϕ

(
x̃t, t,hω ◦ vθ(x)

)∥∥2

2
.

8: end for

9: # =================================== Stage-2 ==================================
10: Plug LoRA upon vθ .
11: for x in D do
12: ▷ Prepare input data for generative modeling in latent space: x̃1 = vae(x) and x̃0 ∼ N (0, I).
13: ▷ Interpolating in the feature space: x̃t = tx̃1 + (1− t)x̃0.
14: ▷ Visual encoding as conditions for denoisers: hω ◦ vθ(x).
15: ▷ Timestamp sampling via scaled Logit-Normal distributions: ε ∼ N (0, 1) then t = sigmoid(s · ε).
16: ▷ Denoising regression objective (flow matching): # update vθ. Optional: gϕ and hω.

argmin
θ

Et,x,x̃0,x̃1

∥∥(x̃1 − x̃0)− gϕ

(
x̃t, t,hω ◦ vθ(x)

)∥∥2

2
.

17: end for
Output: The enhanced visual model v⋆

θ with stronger fine-grained representations.
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Algorithm 2 Two-stage Visual Enhancements with Discrete Lightweight Denoiser

Input: Lightweight and random-initialized denoiser gϕ(·), instantiated with a lightweight Perceiver.
Input: Pre-trained CLIP ViT vθ(·) for fine-grained visual representation enhancements.
Input: Random initialized projector hω(·) to bridge the feature space of vθ and condition space of gϕ.
Input: Mask ratio r for discrete modeling.
Input: Pre-trained VQ-GAN vq-gan(·) to discrete indices for generative modeling.
Input: Image-only training dataset D without annotations.

1: # =================================== Stage-1 ==================================
2: for x in D do
3: ▷ Obtain latent embeddings and corresponding discrete indices of input data in VQ-GAN’s codebook: x̃, s = vq-gan(x).
4: ▷ Masking x’s tokens with ratio r to obtain masked part x̃mask, smask and unmasked part x̃unmask, sunmask.
5: ▷ Visual encoding and obtain conditions via cross-attention for denoisers:

Q = x̃unmask,

K, V = concat
(
x̃unmask;hω ◦ vθ(x)

)
,

cω,θ = cross-attn(Q,K, V ).

6: ▷ Denoising cross-entropy objective (masked index prediction): # only update gϕ and hω.

argmin
ϕ,ω

Ex − log

L∏
i=1

gϕ

(
smask|sunmask, cω,θ

)
.

7: end for

8: # =================================== Stage-2 ==================================
9: Plug LoRA upon vθ .

10: for x in D do
11: ▷ Obtain latent embeddings and corresponding discrete indices of input data in VQ-GAN’s codebook: x̃, s = vq-gan(x).
12: ▷ Masking x’s tokens with ratio r to obtain masked part x̃mask, smask and unmasked part x̃unmask, sunmask.
13: ▷ Visual encoding and obtain conditions via cross-attention for denoisers:

Q = x̃unmask,

K, V = concat
(
x̃unmask;hω ◦ vθ(x)

)
,

cω,θ = cross-attn(Q,K, V ).

14: ▷ Denoising cross-entropy objective (masked index prediction): # update vθ. Optional: gϕ and hω.

argmin
θ

Ex − log

L∏
i=1

gϕ

(
smask|sunmask, cω,θ

)
.

15: end for
Output: The enhanced visual model v⋆

θ with stronger fine-grained representations.

17


	Introduction
	Related Works
	Preliminaries of Generative Models
	Method
	Overview and Formulation
	Conditional Visual Tokens
	Denoising Configurations
	Generation Paradigms

	Experiments
	Experimental Setup
	Comparative Results
	Key Explorations and Ablations
	Further Analysis

	Conclusive Remarks
	Relationship with Prior Works
	More Training Details
	Diagrams of Timestamp Sampling
	More Experimental Results
	Qualitative Results of CLIPs
	Qualitative Results of MLLMs
	Algorithms

